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THE DYNAMIC EFFECT OF SPEAKING FAST ON SPEECH 
PROSODY

LAURI TAVI

ABSTRACT

Speaking fast causes several changes in speech prosody. In addition, it 
can be associated with a decrease in speech intelligibility. In this study, 
prosodic changes in fast speech were investigated using common prosodic 
measurements and syllabic prosody index (SPI), a novel prominence mea-
sure that combines f0, energy and duration features. Dynamic changes in 
long-term prosodic prominence were investigated using functional data 
analysis (FDA), in which the SPI is transformed into a functional form. 
The possibly decreasing effect of speaking fast on speech intelligibility 
was evaluated using automatic speech recognition. Phonetic analyses of 
syllabic units showed that speaking fast decreases duration, f0 and SPI, 
and increases articulation rate and proportional acoustic energy in the 
frequency range of 0–1 kHz. FDA supported the aforementioned results 
by revealing dynamically decreased overall prominence in fast speech. 
Furthermore, in comparison to regular speech, speech intelligibility was 
found to be significantly lower in fast speech: word error rate (WER) for 
regular speech was 0.27, whereas for fast speech it was 0.86.

Keywords: fast speech, prosody, prominence, functional data analysis, 
speech intelligibility

1. Introduction

It is well known that speech characteristics, such as prosodic features and articulatory ges-
tures, change dynamically over time (Roettger et al., 2019; Niebuhr et al., 2011). The dynamic 
changes occur particularly in natural speech communication, in which speakers alter their 
speech both voluntarily and involuntarily. According to Lindblom’s theory of Hyper and 
Hypoarticulation (H&H), for example, speakers intentionally adapt their speech according 
to conversational demands (Lindblom, 1990). In other words, speakers’ articulatory effort 
can decrease (hypoarticulation) or increase (hyperarticulation) depending on how intelligi-
ble they believe their speech is for listeners. An example of an involuntary change in prosody 
is the Lombard effect, which causes speakers to increase their vocal effort in noisy conditions 
(Stanton et al., 1988; Patel & Schell, 2008). These changes include increases of pitch and 
duration of words, yielding improved speech audibility and intelligibility.

Some prosodic changes, such as decrease in word duration, can also decrease 
speech intelligibility (Mayo et al., 2012; Hazan & Markham, 2004). In addition to the 
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fact that words may be less carefully articulated in fast speech (Janse, 2004), the timing 
patterns are different from those in regular speech tempo. When speaking fast, the 
duration of unstressed syllables is reduced more than that of stressed syllables, result-
ing in a more prominent prosodic pattern (Janse, 2004). The more prominent pattern 
in fast speech, however, probably does not improve intelligibility. In fact, increasing 
the speech rate artificially without changing prominence patterns has yielded speech 
that is more difficult to process compared to naturally fast speech (Janse et al., 2003; 
Janse, 2004).

Prosodic prominence refers to the relative emphasis of syllables, which can be acous-
tically measured as the variation of relative energy, duration and fundamental frequency 
(f0) (Greenberg et al., 2003; Tavi & Werner, 2020). Although the term “prominence” 
typically refers to relative changes, for example, between adjacent syllables, here the term 
is also used to describe the strength of emphasis between different speaking conditions. 
During fast speech, speakers might not be able to properly emphasize syllables due to 
the limited articulation and processing time, which could result in a decrease of overall 
prominence. However, to the author’s knowledge, previous phonetic studies lack acous-
tically orientated analyses of exactly how fast speech impacts the dynamics of prosodic 
prominence in healthy speakers.

In order to establish the relationship between fast speech and prosodic prominence, 
two hypotheses were formulated and tested in this study: Speaking fast (1) decreases 
prosodic prominence and (2) impairs speech intelligibility. The possible decrease of 
prosodic prominence is examined focusing on different aspects of prosody, i.e., pitch, 
energy and durational characteristics. To avoid subjective listening tests, speech intel-
ligibility was evaluated using the accuracy of automatic speech recognition (ASR) 
in terms of word error rate (WER). WER has been a common metric to evaluate 
speech intelligibility in an objective and comparable manner in numerous technolo-
gy-oriented speech studies, such as in Voice Privacy Challenge (Tomashenko et al.,  
2021).

In addition to inspecting conventional statistics, this study utilizes functional data 
analysis (FDA) in order to reveal wide-scale dynamic differences in prosodic promi-
nence between regular and fast speech. The focus is on the steadiness, or major shifts, 
of long-term prominence rather than on high-frequency prominence variation between 
adjacent syllables. FDA is a methodology which extends conventional statistics from dis-
crete values to functions of time (Ramsay et al., 2009). One popular method in FDA has 
been functional principal component analysis (fPCA), in which eigenvalues are paired 
with eigenfunctions instead of eigenvectors as in traditional PCA. In previous phonetic 
studies, fPCA has been shown to be an effective method of capturing the dynamic nature 
of speech (Cronenberg et al., 2020; Gubian et al., 2010, 2011; Zellers et al., 2010; Gubian 
et al., 2015).

In this paper, Section 2 will describe the speech data and analysis techniques used in 
this study. The answers to the aforementioned hypotheses will be presented in Section 3 
and discussed in Section 4.
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2. Speech data and methods

2.1 The Chains corpus

Prosodic characteristics of fast speech are investigated using the Chains corpus. The 
Chains corpus was collected in 2005 in order to study challenges in speaker identification 
(Cummins et al., 2006). The corpus contains six different speaking conditions (i.e., retell-
ing, synchronous imitation, repetitive synchronous, solo, fast, and whispered speech) 
from 36 (20 male and 16 female) speakers. The speakers read aloud four short fables 
(”Cinderella”, ”Rainbow text”, ”North Wind and the Sun”, and ”Members of the Body”) 
and 33 individual sentences. In this study, only the four fables produced with solo (here-
after referred to as “regular”) and fast speaking conditions were analysed.

2.2 Phonetic measurements

Phonetic analyses were carried out with Praat (Boersma and Weenink, 2020) and per-
formed separately for the female and male speakers. Firstly, the readings of the four fables 
were automatically segmented into syllabic units using Vocal toolkit (Corretge, 2020), 
which adapts a script (De Jong and Wempe, 2009) to detect syllable nuclei. The term 
”syllabic unit” is used here because automatic syllable markings are not perfectly aligned 
with linguistic syllables.

Secondly, a total of five acoustic-phonetic features were analysed from the syllabic 
units: articulation rate, duration, relative energy proportion below 1 kHz in a frequency 
range of 0–4 kHz, median f0 and syllabic prosody index (SPI). The SPI (Tavi and Werner, 
2020) measures prosodic prominence in syllables by combining their pitch, duration and 
energy proportion below 1 kHz into one feature. SPI is formulated as

The higher the SPI, the higher the prominence in a syllabic unit. In pitch analysis, 
the ceiling and the floor values were set to 120 and to 500 Hz for female speakers and 
to 70 and to 400 Hz for male speakers. The relative energy proportion was calculated by 
dividing the overall energy in the frequency range of 0–1 kHz by the overall energy in 
the frequency range of 0–4 kHz. This measure of spectral tilt is considered as an indicator 
of emphasis, since in weaker speech segments, energy is more concentrated in the lower 
frequencies (Tavi & Werner, 2020).

2.3 Functional data analyses

In the first step of FDA, scalar SPI values were transformed into logarithmic contin-
uous functions, or functional SPIs (fSPIs). A (natural) logarithmic scale was used due to 
the fact that speech perception is also logarithmic (Reetz, 2009). Only the SPI measure-
ments were used in functional analyses because they present all the main prosodic fea-
tures (Tavi & Werner, 2020) in a single measure. The B-spline basis system was used for 
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transforming the scalar SPI values to fSPIs, as it is a common choice for aperiodic signals 
(Gubian et al., 2015). The order of polynomial segments was set to four and the number 
of basis functions was set to 42. The lambda parameter, which defines the amount of 
smoothness, was 0.1. These parameters were chosen based on visual inspections of the 
resulting functions using different levels of smoothing. A strong smoothing was applied 
in order to take into account only the major variation in prosodic prominence and to 
exclude short-term fluctuation in adjacent syllabic units.

Because the aim of this study was to analyse prosodic prominence in different speak-
ing conditions rather than specific linguistic phrases, the mean fSPI of the four fables 
was calculated for each speaker for both regular and fast speech. As a result, the mean 
fSPIs carry information on averaged wide-scale prosodic events, in which the amount of 
intra-speaker and linguistic variation has been reduced.

Finally, fPCA was applied on the mean fSPIs (hereafter referred to as fSPIs instead of 
mean fSPIs). Using fPCA, fSPIs can be reconstructed with the formula:

where µ(t) is the mean of the fSPIs, PCi is the ith principal component function, and si 
is its weight, or score. Because the individual scores model the shape of each function, 
they can be used to investigate the dynamics of continuous speech features, such as f0 or 
formant curves (Gubian et al., 2015).

3. Results

3.1 Prosodic features

A total of five prosodic features were extracted from the syllabic units. The measure-
ments were compared using paired T-tests. Articulation rate was measured in order to 
confirm that syllabic units are truly spoken faster in fast compared to regular speech.

Table 1. Prosodic differences between regular and fast speaking conditions presented as mean values and 
p-values from paired T-tests (For ‘feature’ see Section 2.2).

feature
female speech male speech

regular fast t df p regular fast t df p

AR 5.06 5.86 11.35 15 <.001 4.95 5.95 –14.36 19 <.001

f0 (Hz) 199 190 4.27 15 <.001 120 110 6.17 19 <.001

Eb1kHz 0.91 0.99 –8.74 15 <.001 0.93 0.99 –10.86 19 <.001

dur (s) 0.20 0.17 11.46 15 <.001 0.20 0.17 15.63 19 <.001

SPI 9.19 7.77 8.50 15 <.001 5.51 4.45 13.30 19 <.001
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Table 1 shows the mean values of the two speaking conditions calculated from all 
speakers and the results from the paired T-tests. The results are presented separately 
for male and female speakers. In comparison to regular speaking condition, speaking 
fast increased the articulation rate and energy proportion below 1 kHz. Duration, f0 
and SPI in syllabic units were decreased. The prosodic differences between the speaking 
conditions were statistically significant for both the male and the female speakers using 
a Benjamini & Hochberg -adjusted significance level of 0.05. The results confirmed that 
syllabic units were spoken faster in fast speech and that increasing speech tempo has 
a significantly decreasing effect on prosodic prominence.

3.2 Functional syllabic prosody index

In order to examine the dynamic changes in prosodic prominence caused by fast 
speaking, the SPI trajectories were converted to functional SPIs (see Section 2.3). Figure 
1 shows the mean fSPIs for male and female speakers. The clearest difference between 
the regular and the fast mean fSPIs for both male and female speakers is that the regular 
fSPIs are above the fast fSPIs. The lower fSPIs for fast speech were expected based on 
the results of the acoustic-phonetic analyses presented in Section 3.1. The positions of 
the mean fSPIs are rather consistent throughout the whole functions, indicating that 
speakers are able to retain constant prominence levels in long speech segments of dif-
ferent tempi.

Figure 1. Mean fSPIs for male and female speakers.
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fPCA was applied to the fSPIs in order to examine the major modes of prominence 
variation. Figure 2 demonstrates the effects of PC functions on the mean fSPIs using 
the trajectories of plus and minus signs. These trajectories are formed by multiplying 
the PC functions by the standard deviation of their weightings, which are then either 
added to or subtracted from the mean fSPI. The effects are rather similar for male 
and female speakers: PC1 (top panels) explains the variation related to location of the 
fSPI. It also explains a major part of the fSPI variability (>80%). An increase of PC1 
weighting, or s1, will raise the mean fSPI, whereas decrease of the weighting will lower 
it. PC2 and its weighting, or s2, are more associated with the timings of positive and 
negative prominence peaks; however, the second PCA function explains only 1.6% of 
the fSPI variation.

Figure 2. The effect of the first two PC functions on the male and the female speakers’ mean fSPIs. 
Trajectories of plus and minus signs demonstrate the effects of the PC functions and standard deviation 
of their scores on the mean fSPIs (solid lines).
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Figure 3 reveals how the two speaking conditions of individual speakers are located in 
the PC1–PC2 score space. Letters f (fast) and r (regular) indicate the speaking condition 
and the identifier below the letters indicates speaker identity. In the PC score spaces, fast 
speech is mainly located on the left and regular speech on the right. The division between 
the speaking conditions is clearer with the male speakers, as the female speakers’ scores 
have more overlap. However, each speaker’s s1 of fast speech is lower compared to their s1 
of regular speech (see Figure 4). The s2 shows no relationship specific to the two speaking 
conditions.

Figure 3. PC score spaces for male and female speakers.
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3.3 Speech intelligibility

Sections 3.1 and 3.2 described several changes in prosody caused by the increase of 
speech tempo. To test whether these changes are related to speech intelligibility, the four 
fable passages were transcribed using an ASR system provided by BAS Web Services 
(Kisler et al., 2017). Then, a Python script1 was used to calculate WERs for each speak-
er’s regular and fast versions of the passages. WER divides the number of errors (i.e., the 
substitutions, insertions and deletions) by the total number of words. Although WER is 
reported as a percentage, it can be more than 100%, because the number of errors can be 
higher than the number of words in the reference text.

1  https://holianh.github.io/portfolio/Cach-tinh-WER/

Figure 4. The s1 differences between fast and regular speech for each speaker. The s1 of regular speech is 
subtracted from the s1 of fast speech.
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Figure 5. WERs in the regular and the fast-speaking conditions. Two outliers of the fast speech group 
(WERs = 4.21 and 2.32) were excluded from the figure.

Figure 6. WER differences between fast and regular speech for each speaker. The differences are 
calculated by subtracting speaker-specific WERs of regular speech from those of fast speech.
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Figure 5 reveals a drastic increase of WER in fast speech; whereas the mean WER is 
0.27 in regular speech, in fast speech it increases to 0.86. The differences between the 
two speaking conditions for individual speakers are presented in Figure 6. This result 
shows that fast speech has a negative effect on ASR accuracy for all speakers, although 
the amount of difference varies between speakers.

To evaluate the relationship between changes in the prosodic features and speech intel-
ligibility, six correlation tests were carried out using a Benjamini & Hochberg -adjusted 
significance level of 0.05. The results are presented in Table 2.

Table 2. Correlations between mean values of WER and the mean prosodic features of the speakers. 
The correlation tests included both speaking conditions. Statistically significant correlations are marked 
using bold type.

feature
male speakers female speakers

r p r p

s1 –0.48 0.004 –0.31 0.088

SPI –0.46 0.006 –0.30 0.102

f0 (Hz) –0.29 0.088 –0.06 0.725

eb1kHz 0.43 0.008 0.49 0.008

duration (s) –0.57 0.001 –0.60 0.001

AR 0.62 >0.001 0.64 0.001

The correlation between the s1 and WERs was statistically significant for the male 
speakers (r=–0.48), but not for the female speakers (r=–0.31). Similarly, the correlation 
between the scalar mean SPIs and WERs was statistically significant for the male (r= 
–0.46) but not for the female speakers (r=–0.30). Therefore, the SPI-related correlations 
demonstrate at least partial association between decreased prominence and speech intel-
ligibility.

The energy values, syllable durations and ARs also correlated with WERs, which shows 
that lower speech intelligibility is associated with higher energy proportion below 1 kHz 
at a faster speech tempo. The correlation was especially strong between AR and WERs 
(r=0.62 and 0.64), demonstrating the strong negative effect of speaking fast on speech 
intelligibility. However, there was no significant correlation between f0 and WERs. Over-
all, the results considering the relationship between prosodic features and WERs were 
largely similar for the male and the female speakers.

4. Discussion

In the Introduction, two hypotheses were presented: speaking fast (1) decreases pro-
sodic prominence and (2) deteriorates speech intelligibility. The results confirmed both 
of them. The mean values of articulation rate, syllabic duration, f0, energy proportion 
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below 1 kHz and SPI revealed a significant change towards lower prominence when the 
speakers spoke fast compared to regular speech tempo.

The dynamic changes in prosodic prominence were investigated using fPCAs, which 
revealed the major modes of variation in the fSPIs. The changes between the two speaking 
conditions were first examined for the male and the female speaker groups and then for 
the individual speakers in the PC score spaces. The first PC and the s1, which explained 
over 80% of prominence variation, were mainly related to the overall height of the mean 
fSPIs. The second PC and the s2, which explained only 1.6% of the variation, were more 
associated with the timings of the peaks in the mean fSPIs. Even though the clusters of 
the two speaking conditions partly overlapped in the PC score spaces, each speaker’s s1 
was systematically lower in fast speech, indicating lower fSPIs. The s2 variation was found 
to be unrelated to the speaking conditions. Thus, the functional results mainly support-
ed the findings from the conventional prosodic analyses, but also showed rather high 
inter-speaker variation in prosodic prominence. Moreover, they verified that prosodic 
prominence is consistently (dynamically) lower in fast speech, which would not have 
been possible using conventional statistics.

Finally, the negative effects of speaking fast on speech intelligibility were established; 
in terms of mean WERs, the ASR accuracy decreased drastically from 0.27 to 0.86 when 
the speakers spoke fast. Even though the amount of decrease in WER varied between 
the speakers, ASR accuracy decreased for every speaker during fast speech. In addition, 
there was a statistically significant correlation between the WERs and most of the studied 
prosodic features.

Overall, this study has shown that when speakers intentionally alter their articulation 
rate, this has a holistic effect on speech prosody. Hence, the results suggest that it might 
be difficult, or even impossible, for speakers to alter speech tempo without an impact on 
other prosodic features. One of the few exceptions according to the previous literature 
might be speech rhythm, which was shown to have no significant within-speaker varia-
tion in different tempo conditions (Dellwo et al., 2015). Nevertheless, if the implication 
above holds, different prosodic aspects of speech can be even more connected than has 
been assumed in previous studies. Therefore, an aim for future studies would be to verify 
whether or not speakers are capable of conducting only tempo-related changes in speech 
prosody. In order to achieve this aim, functional data analyses can provide an efficient 
methodological framework.

5. Conclusions

In this study, prosodic changes caused by an increase of speech tempo were inves-
tigated. Dynamic changes in prosodic prominence were studied using SPI, a  novel 
prominence measure, and functional PCA. In addition, the effects of increased tempo 
on speech intelligibility were evaluated using ASR. The results confirmed an expected 
increase in articulation rate and decrease in syllable duration in fast speech. In addition, 
energy proportion below 1 kHz was found to increase and f0 and SPI to decrease. fPCA 
verified dynamic changes in the functional SPIs, showing a systematic decrease for each 
speaker in fast speech. Finally, automatic transcriptions using ASR substantiated the neg-
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ative effect of speaking fast on speech intelligibility. In addition, most of the prosodic 
measures correlated with the ASR accuracy.
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