PRESERVING MEASURABILITY WITH COHEN ITERATIONS

RADEK HONZÍK

Department of Logic, Faculty of Arts, Charles University E-mail: radek.honzik@ff.cuni.cz

ABSTRACT

We describe a weak version of Laver indestructibility for a μ -tall cardinal $\kappa, \mu > \kappa^+$, where "weaker" means that the indestructibility refers only to the Cohen forcing at κ of a certain length. A special case of this construction is: if μ is equal to κ^{+n} for some $1 < n < \omega$, then one can get a model V^* where κ is measurable, and its measurability is indestructible by Add(κ, α) for any $0 \le \alpha \le \kappa^{+n}$ (Theorem 3.3). **Keywords:** Cohen forcing, measurability

AMS subject code classification: 03E35, 03E55

1. Introduction

Assume κ is supercompact. In [7], Laver defined an iteration P of length κ such that in V[P],¹ κ is still supercompact and every further κ -directed closed forcing preserves the supercompactness of κ (P is often called the *Laver preparation*). We also say that κ is Laver-indestructible in V[P]. The proof of this indestructibility result is essentially based on two useful properties of a supercompact cardinal κ in V: (i) for every $\mu \geq \kappa$, one can choose an elementary embedding $j : V \to M$ with critical point κ such that M is closed under μ -sequences existing in V; this closure is then used to find a *master condition* in Mand proceed with a lifting argument which ensures that supercompactness is preserved,² (ii) there is a single function $f : \kappa \to V_{\kappa}$ such that for every $x \in V$, one can choose an embedding j in (i) so that $j(f)(\kappa) = x$ (this f is often called the *Laver function*).

A typical example of a κ -directed closed forcing is the Cohen forcing at κ , which we will denote by Add (κ, α) ,³ where α is any ordinal larger than 0. The fact that over V[P], Add (κ, α) preserves the measurability of κ is very useful when one wishes to use some

¹ V[P] indicates a *P*-generic extension of *V* whenever it is not important to distinguish specific *P*-generic filters. For instance the statement " φ holds in V[P]" means that φ holds in V[G] for every *P*-generic filter *G*.

² Assume $j : V \to M$ is an elementary embedding, P is a forcing notion, G is P-generic over V, and H is j(P)-generic over M. Then a sufficient condition for j to *lift*, i.e. a sufficient condition for the existence of $j^+ : V[G] \to M[H]$ with $j^+ \upharpoonright V = j$, is that we have $j^{"}G \subseteq H$. With supercompactness, we can often argue that $j^{"}G$ is a condition in M (a master condition), and H can then be built below this master condition. For more details, see [3].

³ Formally speaking, conditions in Add(κ , α) are partial functions of size < κ from $\kappa \times \alpha$ to 2. The ordering is by reverse inclusion.

large cardinal properties of κ in $V[P][\text{Add}(\kappa, \alpha)]$ (see for instance [4] where a model with the tree property at κ^{++} , κ strong limit singular with cofinality ω , is constructed starting with a supercompact κ).

A natural question is whether a "Laver-like" indestructibility is available also for smaller large cardinals. As it turns out, it is the property (i) above which is more important: it is known that for instance a strong cardinal⁴ κ has the analogue of the Laver function, but it is not known whether it can be made indestructible under κ -directed closed forcings.⁵

In this short paper we use the idea of Woodin (as described in [2]) to argue that it is possible to have a limited indestructibility of a μ -tall cardinal⁶ κ , $\kappa^+ < \mu$ regular, in the sense that we can successively extend $V \subseteq V^1 \subseteq V^*$ so that forcing with $Add(\kappa, \mu)$ over V^* yields the measurability of κ . See Section 2.

If $\mu = \kappa^{+n}$, $1 < n < \omega$, we can say more. If κ is $H(\kappa^{+n})$ -hypermeasurable⁷, V^* has the property that forcing with $Add(\kappa, \alpha)$ over V^* for $0 < \alpha \le \kappa^{+n}$ yields the measurability, in fact hypermeasurability, of κ (Theorem 3.1 and Theorem 3.3). Note that in V^* , κ may actually stop being measurable⁸ depending on the iteration P_{κ} which gives $V^* = V^1[P_{\kappa}]$; compare the constructions in Theorem 3.1 and 3.3.

Remark 1.1. We assume that the reader is familiar with the lifting arguments. The general reference is [3]; the more specific constructions used in the present paper are also given in [2].

2. Tall cardinals

In this section, we assume GCH. Let κ be μ -tall cardinal for some regular $\kappa^+ < \mu$. Let $j : V \to M$ be a μ -tall embedding with the extender representation:

$$M = \{ j(f)(\alpha) \mid f : \kappa \to V \& \alpha < \mu \}.$$

In particular, *M* is closed under κ -sequences in *V* and $\mu < j(\kappa) < \mu^+$. Let *U* be the normal measure derived from *j*, and let $i : V \to N$ be the ultrapower embedding generated by *U*. Let $k : N \to M$ be elementary so that $j = k \circ i$. Note that κ is the critical point of *j*, *i* and *j*, *i* have support κ , i.e. every element of *M* and *N* is of the form $j(f)(\alpha)$, or $i(f)(\kappa)$ respectively, for some *f* with domain κ . In contrast, the critical point of *k* is $(\kappa^{++})^N$ and *k* has support which we denote ν , where $(\kappa^{++})^N < \nu < i(\kappa)$, i.e. every element of *M* can be written as $k(f)(\alpha)$ for some *f* in *N* with domain ν .⁹

Let *P* denote the forcing $Add(\kappa, \mu)$ in *V*, Q = i(P), and let *g* be a *Q*-generic filter over *V*. Then the following hold:

⁴ A regular cardinal κ is *strong* if for every $\mu \ge \kappa$ there is $j : V \to M$ with critical point κ and $H(\mu) \subseteq M$.

⁵ A non-supercompact strong cardinal κ can be indestructible under κ -directed closed forcings by a method of [1], but κ needs to be supercompact in the ground model.

⁶ There is $j : V \to M$ with critical point κ such that M is closed under κ -sequences and $j(\kappa) > \mu$.

⁷ κ is $H(\mu)$ -hypermeasurable (also $H(\mu)$ -strong) if there is an elementary embedding $j : V \to M$ with critical point κ such that $j(\kappa) > \mu$, $H(\mu) \subseteq M$, and M is closed under κ -sequences in V.

⁸ If in V^* , κ is not measurable, and it is measurable again in $V^*[Add(\kappa, \alpha)]$ (for a specific α), it is more appropriate to call this step a "resurrection" of the measurability of κ .

⁹ *v* needs to have the property that $k(v) \ge \mu$; some such *v* always exists.

Theorem 2.1. *GCH.* Forcing with Q preserves cofinalities and the following hold in V[g]: (*i*) *j* lifts to $j^1 : V[g] \to M[j^1(g)]$, where j^1 restricted to V is the original j.

- (ii) i lifts to $i^1 : V[g] \to N[i^1(g)]$, where i^1 restricted to V is the original i. $N[i^1(g)]$ is the measure ultrapower obtained from j^1 .
- (iii) k lifts to $k^1 : N[i^{\hat{1}}(g)] \to M[j^{\hat{1}}(g)]$, where k^1 restricted to N is the original k.
- (iv) g is Q-generic over $N[i^1(g)]$.

Proof. We show that Q is κ^+ -closed and κ^{++} -cc in V. Closure is obvious by the fact that N is closed under κ -sequences in V. Regarding the chain condition, notice that every element of Q can be identified with the equivalence class of some function $f : \kappa \to \operatorname{Add}(\kappa, \mu)$. For $f, g : \kappa \to \operatorname{Add}(\kappa, \mu)$, set $f \leq g$ if for all $i < \kappa, f(i) \leq g(i)$; it suffices to check that the ordering \leq on these f's is κ^{++} -cc. Let A be a maximal antichain in this ordering; take an elementary substructure \overline{M} in some large enough $H(\theta)$ of V which contains all relevant data, has size κ^+ and is closed under κ -sequences. Then it is not hard to check that $A \cap \overline{M}$ is maximal in the ordering (and so $A \subseteq \overline{M}$), and therefore has size at most κ^+ .

(i) and (ii). These follow by κ^+ -distributivity of *Q* in *V* and the fact that *j*, *i* have support κ : the pointwise image of *g* generates a generic for *j*(*Q*) and *i*(*Q*), respectively.

(iii). i(Q) is $i(\kappa^+)$ -closed in N, and since $\nu < i(\kappa^+)$, we use the distributivity of i(Q) and the fact that k has support ν to argue that the pointwise image of $i^1(g)$ generates a generic filter which is equal to $j^1(g)$ by commutativity of j, i, k.

(iv). *Q* is $i(\kappa^+)$ -cc in *N* and i(Q) is $i(\kappa^+)$ -closed in *N*. There are therefore mutually generic over *N* by Easton's lemma.

Remark 2.2. It would be tempting to expect that j^1 is still $H(\mu)$ -hypermeasurable if the original j was: however g is not included in $M[j^1(g)]$ and j^1 is therefore just μ -tall. There are some delicate issues involved if one wishes to preserve the $H(\mu)$ -hypermeasurability of κ in Theorem 2.1. A natural strategy is to prepare below κ by a reverse Easton iteration. This approach is taken in [2] where it is also shown that if $\mu = \kappa^{++}$, then Q is isomorphic to $Add(\kappa^+, \kappa^{++})$ and thus the preparation can be implemented by iterating $Add(\alpha^+, \alpha^{++})$ at all inaccessible $\alpha \leq \kappa$. In [5], this representation is shown for $\mu = \kappa^{+n}$ for $2 \leq n < \omega$, i.e. $i(Add(\kappa, \kappa^{+n}))$ is isomorphic to $Add(\kappa^+, \kappa^{+n})$. It seems it is possible to continue up to the first cardinal above κ with cofinality κ , but it is unclear whether it can be extended further.

Remark 2.3. The loss of the $H(\mu)$ -hypermeasurability of j^1 may prevent the use of this method in more complicated situations (such as a subsequent definition of Radin forcing to achieve results of a more global character).

Let us work in the model $V[g] = V^1$ and let us use the notation $j^1, i^1, k^1, V^1, M^1, N^1$ to denote the resulting models and embeddings in Theorem 2.1. Using a fast-function forcing of Woodin, we can assume that there is $f : \kappa \to \kappa$ in V such that $j(f)(\kappa) = \mu$. Let us denote $f(\alpha)$ by μ_{α} ; let C(f) denote the closed unbounded set of the closure points of f: if $\alpha \in C(f)$, then for all $\beta < \alpha, f(\beta) < \alpha$.

Theorem 2.4. There is a forcing iteration R_{κ} defined in V^1 such that $V^1[R_{\kappa}][\text{Add}(\kappa,\mu)] \models \kappa \text{ is } \mu\text{-tall},$ where $\operatorname{Add}(\kappa, \mu)$ is defined in $V[R_{\kappa}]$.

Proof. Define R_{κ} to be the following Easton-supported iteration:

(2.1)
$$R_{\kappa} = \langle (R_{\alpha}, \dot{Q}_{\alpha}) | \alpha \in C(f), \alpha \text{ inaccessible} \rangle,$$

where \dot{Q}_{α} denotes the forcing Add (α, μ_{α}) .

The proof uses the usual surgery argument (see [3]) with Fact 2.5 which allows us to use the generic filter g added in V^1 (for the i^1 -image of Add $(\kappa, \mu)^{V^1}$) in the model $V^1[R_{\kappa}]$ (for the proof, see Fact 2 in [2]).¹⁰

Fact 2.5. Let *S* be a κ -cc forcing notion of cardinality κ , $\kappa^{<\kappa} = \kappa$. Then for any μ , the term forcing $Q_{\mu} = \text{Add}(\kappa, \mu)^{V[S]}/S$ is isomorphic to $\text{Add}(\kappa, \mu)$.

Now we proceed with the proof of Theorem 2.4. Let $G_{\kappa} * H$ be $R_{\kappa} * \operatorname{Add}(\kappa, \mu)^{V^{1}[R_{\kappa}]}$ generic over V^{1} . Using the standard methods, lift¹¹ in $V^{1}[G_{\kappa} * H]$ the embeddings j^{1}, i^{1}, k^{1} to R_{κ} , obtaining commutative triangle $j^{1} : V^{1}[G_{\kappa}] \to M^{1}[j^{1}(G_{\kappa})], i^{1} : V^{1}[G_{\kappa}] \to N^{1}[i^{1}(G_{\kappa})], \text{ and } k^{1} : N^{1}[i^{1}(G_{\kappa})] \to M^{1}[j^{1}(G_{\kappa})].$

Using the elementarity of i^1 , Fact 2.5 applied with $S = i^1(R_{\kappa})$ and $i^1(\text{Add}(\kappa,\mu))$ shows that g – which is present in V^1 – yields a generic filter g' for the forcing $i^1(\text{Add}(\kappa,\mu))$ of $N^1[i^1(G_{\kappa})]$. The pointwise image of g' via k^1 generates a $j^1(\text{Add}(\kappa,\mu))$ -generic filter over $M^1[j^1(G_{\kappa})]$, which is then modified by the standard surgery argument to allow for lifting j^1 to $V^1[G_{\kappa} * H]$ (for details see [2]); i.e. if we denote the lifting of j^1 by j^2 , then

$$j^2$$
: $V^1[G_{\kappa}][H] \rightarrow M^1[j^1(G_{\kappa} * H)]$

witnesses the measurability, and in fact μ -tallness, of κ .

3. Hypermeasurable cardinals

It seems natural to extend Theorem 2.4 and have that the measurability of κ ensured by Add(κ, α) for any ordinal $\alpha, 0 < \alpha \leq \mu$. We will show that this can be achieved with some additional assumptions on μ . For concreteness, we will focus on the example where $\mu = \kappa^{+n}$ for some $1 < n < \omega$.

First, in Theorem 3.1, we provide a standard construction which actually forces κ to stop being measurable in V^* ; the measurability of κ is then resurrected by $Add(\kappa, \alpha)$ for any $\kappa^+ \leq \alpha \leq \kappa^{+n}$.

Theorem 3.1. (GCH) Let $1 < n < \omega$ be fixed and assume κ is $H(\kappa^{+n})$ -hypermeasurable. Then there is an iteration P^1 such that in $V[P^1] = V^1$, κ is still κ^{+n} -hypermeasurable, and for some reverse Easton iteration P_{κ} defined in V^1 , κ stops being measurable in $V^* = V^1[P_{\kappa}]$. In V^* , the measurability – in fact the hypermeasurability – of κ is resurrected by Cohen forcing $Add(\kappa, \alpha)$ for any $\kappa^+ \le \alpha \le \kappa^{+n}$.

¹⁰ Recall that Q_{μ} – mentioned in Fact 2.5 – is the term forcing defined as follows: the elements of Q_{μ} are names τ such that τ is an S-name and it is forced by 1_{S} to be in Add (κ, μ) of V[S]. The ordering is $\tau \leq \sigma \leftrightarrow 1_{S} \Vdash \tau \leq \sigma$.

¹¹ For simplicity, we use the notation j^1 , i^1 , k^1 to denote the partial liftings of the embeddings j^1 , i^1 , k^1 .

Proof. Let *j* be an extender embedding witnessing the $H(\kappa^{+n})$ -hyper-measurability of κ , and let *i* be a normal embedding generated by the normal measure *U* derived from *j*. Recall Lemma 3.2 from [5] which implies that if $i : V \to N$ is an embedding generated by a normal measure on κ , then

(3.2)
$$\operatorname{Add}(i(\kappa), i(\kappa)^{+n})^N \cong \operatorname{Add}(\kappa^+, \kappa^{+n}).$$

Define P^1 is an Easton-supported iteration

 $\langle (P^1_{\alpha}, \dot{Q}_{\alpha}) | \alpha < \kappa, \alpha \text{ is inaccessible} \rangle * \dot{Q}_{\kappa},$

where for an inaccessible $\beta \leq \kappa$, \dot{Q}_{β} is $\mathrm{Add}(\beta^+, \beta^{+n})$ of $V[P_{\beta}^1]$.

Let $G_{\kappa} * g$ be $P_{\kappa}^{1} * \dot{Q}_{\kappa}$ -generic over V, and denote $V[G_{\kappa} * g]$ by V^{1} . Let j^{1} and i^{1} be the liftings of j and i.

In V^1 define P_{κ} as an Easton supported iteration:

$$(3.3) P_{\kappa} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) \mid \alpha < \kappa \text{ is inaccessible} \rangle,$$

where \dot{Q}_{α} denotes the forcing Add (α, α^{+n}) of $V^1[P_{\alpha}]$.

First note that κ stops being measurable in $V^* = V^1[P_{\kappa}]$ by the application of the gap-forcing theorem of [6]: a hypothetical embedding k with critical point κ found in V^* could be written as an embedding from $V^1[P_{\kappa}]$ to some $N[j(P_{\kappa})]$, with $N \subseteq V^1$; in particular a generic filter for $j(P_{\kappa})$ would need to add a non-trivial generic filter at stage κ which cannot be found in $V^1[P_{\kappa}]$.

The rest of the Theorem follows from the following Claim:

Claim 3.2. Let α be an ordinal, $\kappa^+ \leq \alpha \leq \kappa^{+n}$. Then κ is still measurable in $V^1[P_{\kappa}]$ [Add (κ, α)], where Add (κ, α) is defined in $V^1[P_{\kappa}]$.

Proof. It suffices to show the Claim for α's which are cardinals. So assume $\kappa^{+m} = |\alpha|$ for some $1 \le m \le n$. Choose in V^1 an embedding $j_m : V^1 \to M_m$ which witnesses the $H(\kappa^{+m})$ -hypermeasurability of κ with $\kappa^{+m} < j_m(\kappa) < \kappa^{+m+1}$ (this is possible since $2^{\kappa} = \kappa^+$ in V^1). By the definition of P_{κ} , $j_m(P_{\kappa})(\kappa)$ is equal to Add $(\kappa, \kappa^{+n})^{M_m[P_{\kappa}]}$. Since $(\kappa^{+n})^{M_m}$ has size κ^{+m} in V^1 , Add $(\kappa, \kappa^{+m})^{V^1[P_{\kappa}]}$ is equivalent to Add $(\kappa, \kappa^{+n})^{M_m[P_{\kappa}]}$, and therefore the generic for Add $(\kappa, \kappa^{+m})^{V^1[P_{\kappa}]}$ provides a generic for Add $(\kappa, \kappa^{+n})^{M_m[P_{\kappa}]}$. The argument is then finished as in Theorem 2.4, using the fact that the generic g for i^1 (Add (κ, κ^{+m})). □

This concludes the proof of Theorem 3.1.

Note that the method in the proof of Theorem 3.1 does not work for the case of α smaller than κ^+ : every elementary embedding $k : V^1 \to M$ with critical point κ sends κ above κ^+ and therefore $\kappa^+ \leq |\kappa^{+n}|$ in V^1 ; thus $k(P_{\kappa})(\kappa)$, which is $\operatorname{Add}(\kappa, \kappa^{+n})^{M[P_{\kappa}]}$, is in $V^1[P_{\kappa}]$ equivalent to the Cohen forcing at κ of length at least κ^+ . It follows that to lift the embedding, we need to force over $V^1[P_{\kappa}]$ with a Cohen forcing at κ of length at least κ^+ . It $\alpha < \kappa^+$, this condition is not satisfied. We remedy this by a more complicated construction in Theorem 3.3.

Theorem 3.3. With the assumptions and the notation as in Theorem 3.1, one can define P_{κ} so that κ is measurable in V^* , and its measurability – in fact hypermeasurability – is indestructible by Add(κ , α) for any $0 < \alpha \le \kappa^{+n}$.

 \square

Proof. Modify the definition of P_{κ} in (3.3) so that at an inaccessible $\alpha < \kappa$, \dot{Q}_{α} is chosen generically¹² amongst the following forcings: {1} (the trivial forcing), and Add(α, α^{+k}), for $0 \le k \le m$.

Then one can argue that κ is still measurable in V^* : while lifting the embedding j^1 , it suffices to work below a condition in $j^1(P_{\kappa})$ which chooses the trivial forcing $\{1\}$ at stage κ .

To argue that for any $0 < \alpha \le \kappa^{+n}$, κ is still measurable in $V^*[Add(\kappa, \alpha)]$, work below a condition in $j^1(P_{\kappa})$ which chooses the right forcing at stage κ .

4. Open questions

Q1. Is it possible to generalise Theorem 2.4 so that μ is still $H(\mu)$ -hypermeasurable if the original embedding *j* was $H(\mu)$ -hypermeasurable? This would require some sort of preparation below κ in the model V^1 (analogously to the methods in Theorem 3.1).

A related question is this:

Q2. Is it possible to characterise the forcings $i(\text{Add}(\kappa, \mu))$, where $i : V \to N$ is a normal measure ultrapower as in Theorem 2.1? We know that this forcing does not collapse (it is κ^+ -closed and κ^{++} -cc in V), but does it have a uniform representation? In particular, is it isomorphic to $\text{Add}(\kappa^+, \mu)$ of V?

Acknowledgments

The work was mainly supported by FWF/GAČR grant I 1921-N25. A support of travel grant Mobility 7AMB15AT035 is also acknowledged.

References

- Arthur W. Apter. Strong Cardinals can be Fully Laver Indestructible. *Mathematical Logic Quarterly*, 48: 499–507, 2002.
- [2] James Cummings. A model in which GCH holds at successors but fails at limits. Transactions of the American Mahematical Society, 329(1): 1–39, 1992.
- [3] James Cummings. Iterated forcing and elementary embeddings. In Matthew Foreman and Akihiro Kanamori, editors, *Handbook of Set Theory*, volume 2. Springer, 2010.
- [4] James Cummings and Matthew Foreman. The tree property. Advances in Mathematics, 133(1): 1–32, 1998.
- [5] Moti Gitik and Carmi Merimovich. Possible values for 2^{\aleph_n} and $2^{\aleph_{\omega}}$. Annals of Pure and Applied Logic, 90(1-3): 193–241, 1997.
- [6] Joel David Hamkins. Gap forcing. Israel Journal of Mathematics, 125(1): 237-252, 2001.
- [7] Richard Laver. Making the supercompactness of κ indestructible under κ directed closed forcing. Israel Journal of Mathematics, 29(4): 385–388, 1978.

¹² The "lottery preparation" in the terminology of Hamkins.