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ABSTRACT
We consider expansions of De Morgan lattices by an additional unary predicate in-
terpreted in eachDeMorgan lattice by the ideal generated by all elements of the form
a ∧ −a, and describe the finite lattice of strict universal Horn classes of such struc-
tures, thereby extending the description of the lattice of quasivarieties of De Morgan
lattices due to Pynko. We also consider the same problem for expansions of De Mor-
gan lattices by a constant interpreted as the maximal element of this ideal whenever
it exists.
Keywords: De Morgan lattice, inconsistency, Belnap–Dunn logic, quasivariety, uni-
versal Horn class

1. Introduction

The present paper is a logically motivated investigation of certain expansions of De
Morgan lattices. Before dealing with the technical side of the matter, let us therefore first
outline the logical motivation.

The four-valued Belnap–Dunn logic [2, 4] was devised to handle inferences from in-
consistent premises in a non-trivial way. It validates double negation introduction and
elimination and the De Morgan laws without validating either the law of excluded mid-
dle or ex contradictione quodlibet. The Belnap–Dunn logic has a transparent four-valued
semantics which preserves the truth and falsehood conditions of classical logic but al-
lows propositions to be both true and false (corresponding to inconsistent information)
or neither true nor false (corresponding to incomplete information). An essential feature
of this logic is that consistent and inconsistent theories are treated on a par.

An algebraic semantics of the four-valued Belnap–Dunn logic is provided by De Mor-
gan lattices, i.e. distributive lattices equipped with an order-inverting involution, called
the De Morgan negation here. Each De Morgan lattice may be interpreted as an algebra
of propositions where the lattice ordering corresponds to the entailment relation between
propositions. Then Γ ⊢ Δ holds in the Belnap–Dunn logic if and only if the inequality
⋀ Γ ≤ ⋁ Δ holds in each De Morgan lattice.

If we now broaden our notion of logic slightly to subsume inferences between sequents
rather than formulas, we may say that the sequent Γ ⊢ Δ is a consequence of the sequents
Γ1 ⊢ Δ1, … , Γn ⊢ Δn if and only if the quasiequation ⋀ Γ1 ≤ ⋁ Δ1 & … & ⋀ Γn ≤
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⋁ Δn ⇒ ⋀ Γ ≤ ⋁ Δ holds in each De Morgan lattice. That is, the Belnap–Dunn logic
in this broader sense may be identified with the quasiequational theory of De Morgan
lattices.

Our intention is now to extend the expressive power of the Belnap–Dunn logic (in
this broader sense) by talking not only about which propositions follow from which, but
also about which propositions are inconsistent. To this end we allow the premises and
conclusions of our inferences to be not only sequents, but also statements of the form
“the proposition φ inconsistent”. This expansion of the Belnap–Dunn logic then allows
us to express principles such as “if φ ∧ ψ is inconsistent and −ψ is inconsistent, then φ is
inconsistent” or “if φ is inconsistent and −ψ is inconsistent, then φ entails ψ”.

It remains to specify what we mean by calling a proposition inconsistent. There are
broadly two diferent options to choose from: either we talk about logical inconsistency or
about material inconsistency. In the former interpretation, a proposition is inconsistent
by virtue of its logical form, e.g. all propositions of the form (φ∧−φ)∨ (ψ∧−ψ) are logi-
cally inconsistent. In the latter interpretation, it is allowed that there may be propositions
which are inconsistent but not merely by virtue of their logical form, i.e. inconsistency is
treated as a primitive notion. These interpretations correspond to two notions of an in-
consistent predicate on a De Morgan lattice: the standard inconsistency predicate, which
is precisely the ideal generated by elements of the form a ∧ −a, and an arbitrary incon-
sistency predicate, which is any ideal extending the standard inconsistency predicate.

Themain question which we answer here is: howmany strict universal Horn classes of
De Morgan lattices expanded by the standard inconsistency predicate (i.e. a unary predi-
cate interpreted on each De Morgan lattice as the ideal generated by elements of the form
a∧ −a) are there?1 For De Morgan lattices, this question was already answered by Pynko
[7], who proved that there are only finitely many strict universal Horn classes (i.e. qua-
sivarieties) of De Morgan lattices, and provided a full description of the finite lattice of
quasivarieties of De Morgan lattices. By contrast, it was proved by Adams and Dziobiak
[1] that there is a continuum of quasivarieties of De Morgan algebras, i.e. De Morgan
lattices with a bottom and top element which are part of the algebraic signature of such
lattices. In this paper, we extend Pynko’s result and show that in this respect De Morgan
lattices expanded by the standard inconsistency predicate behave like De Morgan lattices
rather than De Morgan algebras, i.e. we prove that there are only finitely many strict uni-
versal Horn classes of such structures.

The structure of the paper is as follows. After reviewing some known facts about De
Morgan lattices in Section 2, we properly define the notions sketched above and introduce
several classes of De Morgan lattices with an inconsistency predicate (called De Morgan
ℐ-lattices throughout the paper for simplicity) in Section 3. The main result of Section 4
then states that these classes in fact exhaust all of the classes which are definable bymeans
of strict universal Horn sentences with the help of the standard inconsistency predicate.
In Section 4 we also consider expansions of De Morgan lattices by an inconsistency con-
stant (called De Morgan 0-lattices for simplicity), which is interpreted as the maximal
element of the inconsistency predicate whenever it exists. It is proved that there are only

1 Recall that a strict universal Horn class is a class defined by strict universal Horn sentences, i.e. disjunctions
of finitely many negated atomic formulas (possibly none) and a single atomic formula in a given signature,
which may in general contain relational symbols other than the equality sign.
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Figure 1. Some De Morgan lattices
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finitely many strict universal Horn classes of Kleene lattices (but not of De Morgan lat-
tices) with a standard inconsistency constant. The paper then concludes with some open
questions.

2. Preliminaries

A De Morgan lattice is a distributive lattice equipped with an order-inverting invo-
lution, i.e. a unary operation denoted − which satisfies the equations −−x = x and
−(x ∨ y) = −x ∧ −y, or equivalently −(x ∧ y) = −x ∨ −y.

Figure 1 depicts some important De Morgan lattices. In all cases the De Morgan nega-
tion consists in turning the lattice upside down around the horizontal axis. In particular,
note thatDM4 is not isomorphic as a De Morgan lattice to B2 ×B2. The algebras B2, K3,
and DM4 are the only three subdirectly irreducible De Morgan lattices.

Definition 2.1. A De Morgan lattice is Boolean if it satisfies the equation x ∧ −x ≤ y,
and it is Kleene if it satisfies the equation x ∧ −x ≤ y ∨ −y.

Definition 2.2. A DeMorgan lattice is non-idempotent if it satisfies the quasiequation
x = −x ⇒ x = y, and it isKleene-regular if it satisfies the quasiequation x ≤ −x & −x∧y ≤
x ∨ −y ⇒ y ≤ −y.

Here we follow the terminology introduced by Pynko [7], except what he calls regular
Kleene lattices we shall (temporarily) call Kleene-regular lattices. We shall show later that
being Kleene-regular is equivalent to being Kleene and satisfying a condition which we
shall call regularity.

The following two facts will be useful later. The first one is originally due to Belnap
and Spencer [3]. It was also proved as Lemma 4.3 in [7]. The second one was established
in the course of the proof of Theorem 4.8 of [7].

Lemma 2.3. A non-trivial De Morgan latticeA is non-idempotent if and only if there is
a De Morgan lattice homomorphism h ∶ A → B2.

Lemma 2.4. If a De Morgan latticeA is neither Kleene nor non-idempotent, thenDM4
is a subalgebra of A.
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Figure 2. The lattice of quasivarieties of De Morgan lattices
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A strict universal Horn sentence is a disjunction of finitely many negated atomic for-
mulas (possibly none) and exactly one atomic formula. A strict universal Horn class is
then a class of similar structures axiomatized by a set of strict universal Horn sentences.
Equivalently (see [6]), a strict universal Horn class is a similar class of structures closed
under substructures and non-empty products and ultraproducts which contains the triv-
ial structure (the singleton structure in which each atomic predicate is interpreted by a
non-empty relation). We follow Gorbunov [6] in using the term quasiequation for strict
universal Horn sentences and the terms quasiequational class or quasivariety for strict
universal Horn classes, even in a signature which contains relational symbols other than
the equality sign.

Note that, like Pynko [7], we shall in fact not rely on the assumption of finitarity and
closure under ultraproducts. Instead of strict universal Horn sentences, we could there-
fore discuss their infinitary counterparts, and instead of strict universal Horn classes, we
could talk about implicational classes in essentially the same sense as Pynko. The word
“quasivariety” may thus be replaced by “implicational class” throughout the paper. For
the sake of its familiarity, however, we stick to the language of quasivarieties.

The lattice of quasivarieties ofDeMorgan latticeswas described by Pynko [7], who also
showed that each implicational class of De Morgan lattices is a quasivariety. This lattice is
shown in Figure 2 along with the generators of each quasivariety. The notation BL, RegKL,
NIKL, KL, NIDML, and DML refers to the classes of Boolean lattices, Kleene-regular lattices,
non-idempotent Kleene lattices, Kleene lattices, non-idempotentDeMorgan lattices, and
De Morgan lattices, respectively. The class KL ∪ NIDML is a quasivariety axiomatized by
the quasiequation x = −x ⇒ y ∧ −y ≤ z ∨ −z, and the node labelled ∗ corresponds to
the trivial quasivariety.
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Finally, let us emphasize the distinction between De Morgan lattices and De Morgan
algebras. A De Morgan algebra is a De Morgan lattice with a bottom and top element
which are part of the algebraic signature. Each finite De Morgan lattice may thus be ex-
panded to a De Morgan algebra. However, as noted in the introduction, this seemingly
innocent addition of the bottom and top elements to the signature has a dramatic impact
on the lattice of quasivarieties: there is a continuum of quasivarieties of De Morgan (in
fact, Kleene) algebras but there are only finitely many quasivarieties of De Morgan lat-
tices. We emphasize that throughout the present paper we deal with De Morgan lattices.
The only results which in any way involve De Morgan algebras and their expansions are
Propositions 4.6 and 4.9.

3. The inconsistency predicate

Aswe already observed in the introduction, eachDeMorgan latticeA comes equipped
with an ideal, denoted ℐA, generated by the elements of the form a ∧ −a for a ∈ A, or
equivalently by the elements a ∈ A such that a ≤ −a. If A is Kleene, then the ideal ℐA
admits a particularly simple description.

Lemma 3.1. If A is a Kleene lattice, then ℐA = {a ∈ A | a ≤ −a}.

Proof. Clearly {a ∈ A | a ≤ −a} ⊆ ℐA. Conversely, suppose that a = (a1 ∧ −a1) ∨
… ∨ (an ∧ −an) ≰ (a1 ∨ −a1) ∧ … ∧ (an ∨ −an) = −a for some a ∈ A. Then there are
ai and aj such that ai ∧ −ai ≰ aj ∨ −aj, hence A is not Kleene. �

IfA is a De Morgan lattice and ℐ is an ideal onA such that ℐA ⊆ ℐ, then the structure
(A, ℐ) will be called aDeMorgan lattice with an inconsistency predicate or aDeMorganℐ-
lattice for short. DeMorganℐ-lattices form a quasivarietywhich is axiomatized relative to
the quasivariety of De Morgan lattices by the quasiequations a ∈ ℐ & b ∈ ℐ ⇒ a∨b ∈ ℐ
and a ∧ −a ∈ ℐ.

A De Morgan ℐ-lattice (A, ℐ) will be called standard if ℐ = ℐA, and it will be called
totally inconsistent if the ideal ℐ is the whole of A. Each De Morgan lattice therefore has
a unique standard expansion and a unique totally inconsistent expansion.

We shall now define several quasivarieties of De Morgan ℐ-lattices and show that they
correspond, in a natural sense, to the quasivarieties of De Morgan lattices defined in the
previous section.

Definition 3.2. A De Morgan ℐ-lattice is:
• Boolean if it satisfies x ∈ ℐ ⇒ x ≤ y
• Kleene if it satisfies x ∈ ℐ & −y ∈ ℐ ⇒ x ≤ y
• non-idempotent if it satisfies x ∈ ℐ & −x ∈ ℐ ⇒ x = y
• regular if it satisfies x ∧ y ∈ ℐ & −y ∈ ℐ ⇒ x ∈ ℐ

Proposition 3.3. Each Kleene ℐ-lattice is standard.

Proof. Suppose that a ∈ ℐ holds in a Kleene ℐ-lattice (A, ℐ). Then clearly −(−a) ∈ ℐ,
therefore by the definition of a Kleene ℐ-lattice we have a ≤ −a, i.e. a = a∧−a ∈ ℐA. �
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Proposition 3.4. A non-trivial De Morgan ℐ-lattice is totally inconsistent if and only if
it is regular but not non-idempotent.

Proof. Each totally inconsistent De Morgan ℐ-lattice (A, ℐ) is clearly regular, and if
it is non-idempotent, then it must be trivial, since a ∈ ℐ and −a ∈ ℐ for all a ∈ A.
Conversely, if (A, ℐ) is not non-idempotent, then is some a ∈ A such that both a ∈ ℐ and
−a ∈ ℐ. If (A, ℐ) is moreover regular, then taking y = a in the regularity quasiequation
yields that the De Morgan ℐ-lattice (A, ℐ) is totally inconsistent. �

The correspondence between De Morgan lattices and their standard expansions is im-
mediate for Boolean, Kleene, and non-idempotent lattices.

Proposition 3.5. A De Morgan lattice is Boolean (Kleene, non-idempotent) if and only
if its standard expansion is Boolean (Kleene, non-idempotent).

Proof. If A is Boolean, then ℐA = {⊥}, hence a ∈ ℐA implies a ≤ b. Conversely, if
ℐA = {⊥}, then a ∧ −a ≤ b since a ∧ −a ∈ ℐA for all a, b ∈ A.

If A is Kleene, then by Lemma 3.1 the condition a ∈ ℐA and −b ∈ ℐA implies that
a ≤ −a and −b ≤ b, hence a = a∧ −a ≤ b∨ −b = b. Conversely, if a ∈ ℐA and −b ∈ ℐA
together imply that a ≤ b, then in particular a ∧ −a ≤ b ∨ −b holds for all a, b ∈ A.

If the standard expansion ofA is non-idempotent andA is non-trivial, then clearly the
DeMorgan negation onA cannot have any fixpoint. Conversely, suppose thatA is a non-
trivial non-idempotent De Morgan lattice. Then there is a homomorphism h ∶ A → B2
by Lemma 2.3. But ℐ ⊆ h−1{⊥} and −ℐ ⊆ h−1{⊤}, hence ℐ ∩ −ℐ = ∅. �

Finally, the reader will notice that the quasivariety of regular De Morgan ℐ-lattices
defined above itself does not correspond to any of the quasivarieties of DeMorgan lattices
listed in the previous section. Nonetheless, we may still define a corresponding class of
regularDeMorgan lattices and show that its intersectionwith the variety ofKleene lattices
is precisely the quasivariety of regular Kleene lattices introduced by Pynko [7].

Definition 3.6. A De Morgan lattice A is regular if for each a ∈ A such that a ∉ ℐA
there is a homomorphism h ∶ A → B2 such that h(a) = ⊤.

It is easy to see that this definition may equivalently be stated as follows: a De Mor-
gan algebra A is regular if and only if ℐA = ⋂h∈Hom(A,B2) h

−1{⊥}, where Hom(A,B2)
denotes the set of all homomorphisms h ∶ A → B2.

It will be useful to provide a description of the smallest congruence θ on a given De
Morgan lattice A such that A/θ is a Boolean lattice. We shall call such congruences
Boolean. Each De Morgan lattice has a smallest Boolean congruence, namely the De
Morgan lattice congruence generated by identifying all elements of ℐA.

Lemma 3.7. The smallest Boolean congruence on a De Morgan lattice A relates x and
y if and only if −a ∧ (x ∨ b) = −a ∧ (y ∨ b) for some a, b ∈ ℐA.

Proof. Let us denote this relation θ. We first verify that it is a De Morgan lattice con-
gruence. It is clear that θ is reflexive and symmetric. Moreover, if −a∧(x∨b) = −a∧(y∨b)
and −c ∧ (y ∨ d) = −c ∧ (z ∨ d) for a, b, c, d ∈ ℐA, then −(a ∨ c) ∧ (x ∨ b ∨ d) =
−(a ∨ c) ∧ (y ∨ b ∨ d) = −(a ∨ c) ∧ (z ∨ b ∨ d) and clearly a ∨ c ∈ ℐA and b ∨ d ∈ ℐA.
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The relation θ is therefore an equivalence relation. It is easy to see that it also respects
meets. To prove that it respects De Morgan negation (and therefore also joins), suppose
that −a∧ (x∨b) = −a∧ (y∨b) for a, b ∈ ℐA. Then (−x∧ −b)∨a = (−y∧ −b)∨a, hence
−(b ∧ −a) ∧ (−x ∨ a) = −(b ∧ −a) ∧ (−y ∨ a) and −xθ−y. The relation θ is therefore a
De Morgan lattice congruence.

If x, y ∈ ℐA, then x ∨ y ∈ ℐA and taking b = x ∨ y and arbitrary a ∈ ℐA yields xθy,
therefore θ is a Boolean congruence. Conversely, each Boolean congruence identifies x
and −a∧ (x∨b) as well as y and −a∧ (y∨b), therefore each Boolean congruence extends
θ. �

Proposition 3.8. A De Morgan lattice is regular if and only if its standard expansion is
regular.

Proof. Suppose that the implication x∧ y ∈ ℐA & −y ∈ ℐA ⇒ x ∈ ℐA holds and let θ
be the smallest Boolean congruence onA. If x/θ = ⊥/θ, where ⊥/θ is the bottomelement
of A/θ, then by the previous lemma there are a, b ∈ ℐA such that −b ∧ (x ∨ a) ∈ ℐA,
hence −b ∧ x ∈ ℐA. But then x ∈ ℐA. This shows that ℐA = ⋂h∈Hom(A,B2) h

−1{⊥}.
Conversely, if a De Morgan lattice A is regular, then x ∈ ℐA if and only if h(x) = ⊥

for all homomorphisms h ∶ A → B2. But if h(x ∧ y) = ⊥ and h(−y) = ⊥, then h(y) = ⊤
and h(x) = h(x ∧ y) = ⊥. �

Proposition 3.9. A De Morgan lattice is both regular and Kleene if and only if it is
Kleene-regular, i.e. if and only if it satisfies the quasiequation x ≤ −x & −x∧y ≤ x∨−y ⇒
y ≤ −y.

Proof. LetA be a De Morgan lattice which satisfies the above quasiequation. To prove
that A is Kleene, substitute x = u ∧ −u and y = (u ∧ −u) ∨ (v ∧ −v). Then x = u ∧ −u ≤
u∨−u = −x and −x∧y = (u∨−u)∧((u∧−u)∨(v∧−v)) = (u∧−u)∨((u∨−u)∧(v∧−v)),
while x ∨ −y = (u ∧ −u) ∨ ((u ∨ −u) ∧ (v ∨ −v)) = (u ∨ −u) ∧ ((u ∧ −u) ∨ (v ∨ −v)).
Therefore −x ∧ y ≤ x ∨ −y and y ≤ −y, i.e. (u ∧ −u) ∨ (v ∧ −v) ≤ (u ∨ −u) ∧ (v ∨ −v).
It follows that u ∧ −u ≤ v ∨ −v.

To prove that A is regular, suppose that a/θ = ⊥/θ for each Boolean congruence θ on
A, where ⊥/θ is the bottom element of A/θ. We are to show that a ∈ ℐA. Lemma 3.7
then implies that there are b, c ∈ ℐA such that −b∧(a∨c) ∈ ℐA, hence −b∧a = d ∈ ℐA.
But then b ∨ d ∈ ℐA and −(b ∨ d) ∧ a ≤ d, hence −(b ∨ d) ∧ a ≤ −a ∨ b ∨ d. Taking
into account that a ∈ ℐA is equivalent to a ≤ −a for all a ∈ A by Lemma 3.1, substituting
x = b ∨ d and y = a into the quasiequation now yields that a ∈ ℐA.

Conversely, let A be a regular Kleene lattice with a ≤ −a and b ≰ −b, i.e. a ∈ ℐA and
b ∉ ℐA by Lemma 3.1. By regularity, there is some h ∶ A → B2 such that h(b) = ⊤. But
h(a) = ⊥ and h(−a ∧ b) = −h(a) ∧ h(b) = ⊤ ≰ ⊥ = h(a) ∨ −h(b) = h(a ∨ −b), hence
−a ∧ b ≰ a ∨ −b. �

The above proposition may be thought of as an explanation of the rather non-trans-
parent quasiequation x ≤ −x & −x ∧ y ≤ x ∨ −y ⇒ y ≤ −y.

We now compile the correspondences proved above into a single theorem.
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Theorem 3.10. If (A, ℐ) is Boolean (Kleene, non-idempotent), then so is the De Mor-
gan lattice A. Conversely, if A is Boolean (Kleene, non-idempotent, regular), then so is its
standard expansion (A, ℐA).

Proof. We have already proved that a De Morgan lattice is Boolean (Kleene, non-
idempotent, regular) if and only if it standard expansion is. The first claim of the the-
orem now follows by virtue of the fact that ℐA ⊆ ℐ holds in every De Morgan ℐ-lattice
(A, ℐ) and the predicate ℐ does not occur in the consequent of any of the quasiequations
defining the classes of Boolean, Kleene, and non-idempotent De Morgan ℐ-lattices. �

Observe that the first part of the above theorem does not hold when it comes to reg-
ularity, a simple counter-example being the totally inconsistent expansion of any non-
regular De Morgan algebra.

4. Quasivarieties of DeMorganℐ-lattices

We shall now investigate precisely how much expressive power the standard incon-
sistency predicate adds to De Morgan lattices. The goal of the present section will be to
describe the lattice of quasivarieties of standard De Morgan ℐ-lattices, and in particular
to prove that it is finite.

Before we can proceed, the notion of a quasivariety of standard De Morgan ℐ-lattices
requires some clarification. The class of all standard De Morgan ℐ-lattices is not closed
under substructures (consider the two-element subalgebra of the standard expansion of
DM4), in particular it is not a quasivariety. By a quasivariety of standard De Morgan ℐ-
lattices we shall therefore not mean a quasivariety all of whose elements are standard De
Morgan ℐ-lattices. Rather, we shall use the following definition.

Definition 4.1. A class of standard De Morgan ℐ-lattices is a quasivariety of standard
De Morgan ℐ-lattices if it is the intersection of a quasivariety of De Morgan ℐ-lattices and
the class of all standard De Morgan ℐ-lattices.

Quasivarieties of standard De Morgan ℐ-lattices may be put into one-to-one corre-
spondence with certain quasivarieties of De Morgan ℐ-lattices, which are more conve-
nient to handle using the theory of quasivarieties.

Definition 4.2. A quasivariety of De Morgan ℐ-lattices is standard if it is generated by
its standard elements.

The quasivarieties of standard De Morgan ℐ-lattices ordered by inclusion form a lat-
tice, as do the standard quasivarieties of De Morgan ℐ-lattices. In the following proposi-
tion, DMILst shall denote the class of all standard De Morgan ℐ-lattices.

Proposition 4.3. The lattice of standard quasivarieties of De Morgan ℐ-lattices is iso-
morphic to the lattice of quasivarieties of standard De Morgan ℐ-lattices via the mapping
K ↦ K ∩ DMILst .

Proof. This mapping is clearly monotonic. Moreover, if K is a quasivariety of De Mor-
gan ℐ-lattices, then K ∩ DMILst is by definition a quasivariety of standard De Morgan
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Table 1. The standard quasivarieties of De Morgan ℐ-lattices

Name Abbreviation Generated by
Boolean BL Bs

2
Kleene KL Ks

3
De Morgan DML Ks

3, DM
s
4

regular RegDML RegKs
4, DM

s
4

regular Kleene RegKL RegKs
4

non-idempotent NIDML Ks
3 × Bs

2, DM
s
4 × Bs

2
non-idempotent Kleene NIKL Ks

3 × Bs
2

regular non-idempotent RegNIDML DMs
4 × Bs

2
totally inconsistent TIL DMs

4

ℐ-lattices. It remains to prove that if K and L are standard quasivarieties of De Morgan
ℐ-lattices and K ∩ DMILst ⊆ L ∩ DMILst , then K ⊆ L. Since K and L are standard, K ∩ DMILst
(L ∩ DMILst) generates K (L) as a quasivariety, therefore K ∩ DMILst ⊆ L ∩ DMILst implies
K ⊆ L. �

Instead of studying the lattice of quasivarieties of De Morgan lattices with a standard
inconsistency predicate, we can therefore investigate the isomorphic lattice of standard
quasivarieties ofDeMorgan lattices. In otherwords, althoughwe are ultimately interested
in studying the standard inconsistency predicate on each De Morgan lattice, admitting
non-standard inconsistency predicates will be a useful tool in the study of De Morgan
lattices equipped with the standard inconsistency predicate.

As an example illustrating the notion of a standard quasivariety, consider the quasi-
variety of De Morgan ℐ-lattices axiomatized by x ∧ −x ≤ y. This class is not a standard
quasivariety of De Morgan ℐ-lattices because each standard De Morgan ℐ-lattice which
satisfies this equation also satisfies the quasiequation x ∈ ℐ ⇒ x ≤ y, which however is
not a consequence of x∧−x ≤ y, as witnessed by the totally inconsistent expansion of the
Boolean lattice B2. On the other hand, the quasivariety axiomatized by x ∈ ℐ ⇒ x ≤ y
is standard, as it is generated by the standard expansion of B2.

When talking about De Morgan ℐ-lattices, the notation As will be used to denote the
expansion of the De Morgan lattice A by the standard inconsistency predicate, as in Ta-
ble 1. To avoid unnecessary proliferation of indices, we introduce the harmless conven-
tion of using e.g. NIDML to denote either the quasivariety of non-idempotent De Morgan
lattices or the quasivariety of non-idempotent De Morgan ℐ-lattices or, later on, the qua-
sivariety of non-idempotent DeMorgan 0-lattices. It will always be clear from the context
which of these is the intended interpretation of e.g. NIDML.

Note that in this section we shall occasionally use the term “algebra” to refer to De
Morgan ℐ-lattices, even though strictly speaking they are not algebras in the sense of
universal algebra.

Theorem 4.4. The quasivarieties of De Morgan ℐ-lattices introduced in the previous
section are generated by the standard algebras shown in Table 1.
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Proof. It is easy to verify that the algebras listed in Table 1 belong to the appropriate
quasivarieties. Conversely, we prove that each finite algebra which belongs to a quasiva-
riety listed in Table 1 embeds into a product of the appropriate algebras. In particular,
observe that if a finite De Morgan ℐ-latticeA is a subdirect product of the algebras Bi for
i ∈ I, then the ideal ℐA is a product of the ideals ℐBi

for i ∈ I.
Let A be a non-trivial finite De Morgan ℐ-lattice. As a De Morgan lattice, A is a sub-

direct product of B2, K3, and DM4. Moreover, the non-standard (totally inconsistent)
expansions of B2 and K3 are subalgebras of the standard expansion of DM4, therefore A
embeds into a product of the standard expansions of B2, K3, and DM4.

If A is Kleene, then A is standard, hence each factor in the subdirect decomposition
ofA is standard. It now suffices to recall that each Kleene (Boolean, regular Kleene, non-
idempotent Kleene) lattice embeds into a product of the appropriate De Morgan lattices.

If A is totally inconsistent, the claim follows immediately from the fact that each De
Morgan lattice embeds into some power of DM4.

If A is non-idempotent, then the subdirect decomposition of A contains B2. If all
occurrences of B2 in the subdirect decomposition of A were totally inconsistent, then
A could not be non-idempotent as a De Morgan ℐ-lattice. Therefore A contains an oc-
currence of Bs

2 in its subdirect decomposition. The claim now follows by virtue of the
inclusionsKti

3 ×Bs
2 ⊆ DMs

4 ×Bs
2 and Bti

2 ×Bs
2 ⊆ DMs

4 ×Bs
2 and Bs

2 ⊆ Ks
3 ×Bs

2, where Bti
2

and Kti
3 are the totally inconsistent expansions of the De Morgan lattices B2 and K3.

Finally, letA be regular. IfBs
2 does not occur in the subdirect decomposition ofA, then

A is not non-idempotent, hence it is totally inconsistent and embeds into some power of
DMs

4. We may divide the subdirect factors of A into two groups (each of them possibly
empty) and viewA as a subdirect product of a totally inconsistent algebra B and a Kleene
algebraC. Observe now thatA is regular only ifC is: if awitness to the failure of regularity
in C, then (a, b) is a witness to the failure of regularity in A for any (a, b) ∈ A. But we
have already seen that the quasivariety of regular Kleene ℐ-lattices is generated byRegKs

4.
Moreover, ifA is non-idempotent, then as we observed above, it may contain Bs

2 in its
subdirect decomposition. Since Bs

2 ⊆ RegKs
4, we may take the generators to be RegKs

4
and DMs

4 × Bs
2. �

In particular, all of these quasivarieties are standard. Figure 3 depicts the lattice of
these quasivarieties ordered by inclusion. The nodes which are, for the sake of easier
readability, labelled ∪ or ∩ are just the unions of the quasivarieties below and the inter-
sections of the quasivarieties above, and the node labelled ∗ is the trivial quasivariety
(containing only the singleton De Morgan ℐ-lattice). In particular, KL ∪ NIDML is the
quasivariety axiomatized by x ∈ ℐ & −x ∈ ℐ & y ∈ ℐ & −z ∈ ℐ ⇒ y ≤ z.

We now show that Figure 3 in fact shows all standard quasivarieties of De Morgan
ℐ-lattices.

Theorem 4.5. The lattice of standard quasivarieties of De Morgan ℐ-lattices is the finite
lattice shown in Figure 3.

Proof. The generating algebras listed in Table 1 witness that all of these quasivarieties
are distinct and standard. It suffices to prove the following facts for each non-trivial stan-
dard quasivariety K of De Morgan ℐ-lattices:
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Figure 3. The standard quasivarieties of De Morgan ℐ-lattices

DML

∪∪

RegDMLNIDMLKL

∩ ∩

RegKL

BL

TIL

∗

(i) either BL ⊆ K or TIL ⊆ K
(ii) either BL ⊆ K or K ⊆ TIL
(iii) either K ⊆ BL or K ⊆ TIL or RegKL ⊆ K
(iv) either K ⊆ NIDML ∪ RegDML or KL ⊆ K
(v) either K ⊆ RegDML or NIKL ⊆ K
(vi) either K ⊆ KL or K ⊆ TIL or RegNIDML ⊆ K
(vii) either K ⊆ NIDML ∪ KL or TIL ⊆ K
To prove (i), let A be a non-trivial standard De Morgan ℐ-lattice. If A is not totally

inconsistent, then Bs
2 ⊆ A. If A is totally inconsistent, then it is clearly neither Kleene

nor non-idempotent, henceDMs
4 ⊆ A by Lemma 2.4. Therefore either BL ⊆ K or TIL ⊆ K.

To prove (ii), suppose that K ⊈ TIL. Then some A ∈ K is not totally inconsistent. But
then a ∉ ℐA for some a ∈ A, hence {a ∧ −a, a ∨ −a} is a subalgebra of A isomorphic to
Bs
2. Therefore BL ⊆ K.
To prove (iii), suppose that K ⊈ TIL and K ⊈ BL. Then some A ∈ K is not totally

inconsistent and some B ∈ K is not Boolean. Let a ∈ A be such that −a ≤ a and
a ∉ ℐA (hence −a < a) and let b, c ∈ B be such that b ≤ −b, b ∈ ℐB, and c < b.
Then {(−a, c), (−a, b), (a, −b), (a, −c)} is a subalgebra of A × B isomorphic to RegKs

4.
Therefore RegKL ⊆ K.

To prove (iv), suppose that K ⊈ NIDML∪RegDML. Then some standardA ∈ K is neither
non-idempotent nor totally inconsistent. There is therefore some a ∈ A such that a = −a
and some b ∈ A such that b ∉ ℐA. Then {a∧−b, a, a∨b} is a subalgebra ofA isomorphic
to Ks

3. Therefore KL ⊆ K.
To prove (v), suppose that K ⊈ RegDML. Then Bs

2 ∈ K and some standard A ∈ K is
not regular, i.e. there are some a ∈ A and b ∈ ℐA such that −b ∧ a ∈ ℐA but a ∉ ℐA,
in particular a ≰ −b. Without loss of generality b = −b ∧ a, since −b ∧ a ∈ ℐA and
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−(−b ∧ a) ∧ a = (b ∨ −a) ∧ a = b ∨ (a ∧ −a) ∈ ℐA. We may moreover take a = a ∨ b,
since −b ∧ (a ∨ b) = (−b ∧ a) ∨ (b ∧ −b) ∈ ℐA and −b ∧ (a ∨ b) = (−b ∧ a) ∨ (b ∧
−b) = b ∨ (b ∧ −b) = b. The De Morgan lattice {a ∧ −a, b, a, −a, −b, a ∨ −a} is a
subalgebra of the De Morgan lattice reduct of A, let us call it B. We know that a ∉ ℐA
and clearly a ∧ −a, b ∈ ℐA. If −a ≰ a, then B is isomorphic as a De Morgan lattice
to K3 × B2, hence the algebra B × Bs

2 has a subalgebra isomorphic to Ks
3 × Bs

2, namely
{a∧−a, b, a}×{⊥}∪{−a, −b, a∨−a}×{⊤}. Likewise, if −a ≤ a, then −a ≤ −b∧a = b,
thus −b ≤ a and b = −b ∧ a = −b. The algebra B is therefore isomorphic to Ks

3 and
Ks
3 × Bs

2 ∈ K, hence K ⊆ NIKL.
To prove (vi), suppose that K ⊈ KL and K ⊈ TIL. Then Bs

2 ∈ K there is some standard
A ∈ K which is not Kleene. Since A is standard, it is not even Kleene as a De Morgan
lattice, i.e. there are a, b ∈ A such that a ≤ −a, b ≤ −b, and a ≰ −b. Let c = a∨ (−a∧ b)
and d = b∨ (−b∧ a). Then c = a∨ (−a∧ b) ≤ −a∧ (a∨ −b) = −c and likewise d ≤ −d.
Moreover, c ∧ −d = (a ∨ (−a ∧ b)) ∧ −b ∧ (b ∨ −a) ≤ b ∨ (−b ∧ a) = d and likewise
−c ∧ d ≤ c, −c ≤ c ∨ −d, and −d ≤ d ∨ −c. The De Morgan lattice {c ∧ d, c, d, c ∨ d}
is therefore a subalgebra of the De Morgan lattice reduct of A, let us call it B. It is clear
that {c ∧ d, c, d, c ∨ d} ⊆ ℐA, hence the algebra B × Bs

2 has a subalgebra isomorphic to
DMs

4 × Bs
2, namely {c ∧ d, c, d, c ∨ d} × {⊥} ∪ {−c ∧ −d, −c, −d, −c ∨ −d} × {⊤}. It

follows that K ⊆ RegNIDML.
To prove (vii), suppose that K ⊈ NIDML∪KL. Then there is some standardA ∈ Kwhich

is neither Kleene nor non-idempotent. It is therefore neither Kleene nor non-idempotent
as a De Morgan lattice, hence DMs

4 ⊆ A by Lemma 2.4 and TIL ⊆ K. �

In the following proposition, by a De Morgan ℐ-algebra we shall mean a De Morgan
ℐ-lattice with a bottom and top element which are part of the signature. The quasivariety
of Kleene ℐ-algebras, i.e. De Morgan ℐ-algebras whose appropriate reduct is a Kleene ℐ-
lattice, is then denoted KA.

Proposition 4.6. Let K be a quasivariety of De Morgan ℐ-lattices (ℐ-
algebras). Then each algebra in K is standard if and only if K ⊆ KL (K ⊆ KA).

Proof. Each Kleene ℐ-lattice is standard. Conversely, suppose that K ⊈ KL. Then there
is some A ∈ K with a, b ∈ ℐA such that a ≰ −b in A, hence c ≰ −c for c = a ∨ b ∈ ℐA.
But then either −c < c, in which case the non-standard expansion B2 is a subalgebra of
A, or −c ≰ c, in which case a non-standard expansion of B2 × B2 is a subalgebra of A.

The proof for De Morgan ℐ-algebras is analogical, except instead of the non-standard
expansions of B2 and B2 × B2 we may have to take the non-standard expansions of the
extensions of these De Morgan lattices by an extra bottom and top element. �

Finally, we consider how the expressive power of our language changes when we re-
place the inconsistency predicate by an inconsistency constant. By a De Morgan lattice
with an inconsistency constant (or briefly De Morgan 0-lattice) we shall mean a De Mor-
gan latticeA equipped with a constant 0which satisfies the equation x∧−x ≤ 0.2 Such an
algebra is standard if ℐA is precisely the principal ideal generated by the element 0. Each
finite De Morgan lattice has a unique expansion by a standard inconsistency constant,

2 Do not confuse the constant 0 with the bottom element of the lattice.
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Table 2. The quasivarieties of Kleene 0-lattices

Name Abbreviation Generated by
Boolean BL Bs

2
Kleene KL Bs

2, Ks
3

regular Kleene RegKL RegKs
4

non-idempotent Kleene NIKL Ks
3 × Bs

2
idempotent Kleene IdemKL Ks

3

namely 0 = ⋁ ℐA. A quasivariety of De Morgan 0-lattices is again called standard if it is
generated by its standard elements.

Each inconsistency constant 0 onAdefines the inconsistency predicate {a ∈ A|a ≤ 0}
onA. All notions defined in the previous section of De Morgan ℐ-lattices thereby extend
to De Morgan 0-lattices. In addition, we shall call a De Morgan 0-lattice idempotent if it
satisfies the equation −0 ≤ 0. We now show that idempotence is the only new property
of Kleene lattices which may be expressed quasiequationally using the standard inconsis-
tency constant (rather than the standard inconsistency predicate). By contrast, we show
that there are infinitely many standard quasivarieties of De Morgan 0-lattices (although
we do not establish exactly how many).

When talking about De Morgan 0-lattices, the notation As will be used to denote the
expansion of the De Morgan lattice A by the standard inconsistency constant (provided
that it exists), as in Table 2. Here by a standard inconsistency constant we mean one
which generates a standard inconsistency predicate as its principal ideal. Note that the
inconsistency constant 0 is standard if and only if there is a finite set B ⊆ A such that
0 = ⋁a∈B(a ∧ −a). It will also be useful to define 1 as −0.

Theorem 4.7. The quasivarieties of De Morgan 0-lattices introduced in the previous
section are generated by the standard algebras shown in Table 2.

Proof. Let A be a Kleene 0-lattice. Then the Kleene lattice reduct of A is a subdirect
product of copies of B2 and K3. Since 0 ≤ 1, the component of 0 in each subdirect factor
has to be the standard one on pain of violating the equality 0 ≤ 1, hence A is a subdirect
product of Bs

2 and Ks
3. If A is Boolean, then it is Boolean as a Kleene lattice, hence it is

a subdirect power of Bs
2. If A is non-idempotent, i.e. if 1 ≰ 0, then at least one of the

subdirect factors has to be isomorphic to Bs
2 (moreover, Bs

2 ⊆ Ks
3 × Bs

2). If on the other
handA is idempotent, i.e. if 1 = 0, then all of the subdirect factors must be isomorphic to
Ks
3. Finally, if A is regular, i.e. if it satisfies the quasiequation 1 ∧ x ≤ 0 ⇒ x ≤ 0, then A

is regular as a Kleene lattice, therefore as a Kleene lattice it is a subdirect power ofRegK4.
But then the component of 0 in each subdirect factor again has to be the standard one,
therefore A is a subdirect power of RegKs

4. �

We shall now describe the lattice of quasivarieties of Kleene 0-lattices. Note that all
such quasivarieties are standard, since each Kleene 0-lattice is easily seen to be standard.

Theorem 4.8. The lattice of quasivarieties of Kleene 0-lattices is the finite lattice shown
in Figure 4.
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Figure 4. The quasivarieties of Kleene 0-lattices

KL

NIKL

RegKL

BL

∗

IdemKL

Proof. If A is a non-trivial Kleene 0-lattice, then either 0 < 1, in which case Bs
2 ⊆ A,

or 0 = 1, in which caseKs
3 ⊆ A. Therefore for each non-trivial quasivariety K of Kleene 0-

lattices we have either IdemKL ⊆ K or BL ⊆ K, and either K ⊆ IdemKL or BL ⊆ K. Suppose
therefore that BL ⊆ K, i.e. Bs

2 ∈ K. If K ⊈ BL, then there is some non-Boolean A ∈ K,
hence A × Bs

2 is a non-idempotent non-Boolean Kleene 0-lattice and RegKs
4 ⊆ A. If K is

a quasivariety such that K ⊈ RegKL, then Bs
2 ∈ K and there is some non-regularA ∈ K, i.e

there is some a ∈ A such that 1∧a ≤ 0 but a ≰ 0. Without loss of generality a = a∨0, i.e.
0 ≤ a. Then it is straightforward to verify that {a∧ −a, 0, a, −a, 1, a∨ −a} is a subalgebra
of A isomorphic to Ks

3 × Bs
2. Finally, if K ⊈ NIKL, then there is some non-trivial A ∈ K

which is not non-idempotent, hence Ks
3 ⊆ A. �

In the following proposition, by a De Morgan 0-algebra we shall mean a De Morgan
0-lattice with a bottom and top element which are part of the signature. The quasivariety
of Kleene 0-algebras, i.e. De Morgan 0-algebras whose appropriate reduct is a Kleene 0-
lattice, is then denoted KA.

Proposition 4.9. Let K be a quasivariety of De Morgan 0-lattices (0-
algebras). Then each algebra in K is standard if and only if K ⊆ KL (K ⊆ KA).

Proof. EachKleene 0-lattice is standard. Conversely, let K be a quasivariety of DeMor-
gan 0-lattices such that K ⊈ KL. Then there is some A ∈ K such that 0 ≰ 1 in A. But then
either 1 < 0, in which case the non-standard expansion of B2 is a subalgebra of A, or
1 ≰ 0, in which case a non-standard expansion of B2 × B2 is a subalgebra of A.

The proof for De Morgan 0-algebras is again analogical, except instead of the non-
standard expansions ofB2 andB2 ×B2 wemay have to take the non-standard expansions
of the extensions of these De Morgan lattices by an extra top and bottom element. �

We conclude this section by exhibiting an infinite decreasing chain of standard qua-
sivarieties of (regular non-idempotent) De Morgan 0-lattices. Consider, for n ≥ 1, the
quasiequation

(αn) a1 ≤ −a1, … , an ≤ −an, a1 ∨ … ∨ an = 0 ⇒ x = y.
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This quasiequation states that 0 cannot be expressed as a disjunction of n or less elements
of the form a∧−a. ClearlyA is non-standard if and only if it satisfies (αn) for each n ≥ 1,
hence the class of non-standard De Morgan 0-lattices is a quasivariety. The quasiequa-
tions (αn) coincide with the quasiequations (βn) used by Gaitán and Perea in [5] if we
restrict to the variety of De Morgan 0-lattices defined by x ≤ 0.

Lemma 4.10. IfA is a standard DeMorgan 0-lattice which is generated as a DeMorgan
lattice by the finite set X ⊆ A, then 0 = ⋁{x ∧ −x | x ∈ X}.

Proof. It suffices to prove that for each term t and each tuple x of elements from X we
have t(x) ∧ −t(x) ≤ ⋁{x ∧ −x | x ∈ X}. This is a straightforward proof by induction
over the complexity of the term t. �

Let An be the free De Morgan lattice on n generators equipped with the standard in-
consistency constant. Equivalently, An may be defined as the free distributive lattice on
2n generators of the form xi, −xi for 1 ≤ i ≤ n with 0 = (x1 ∧ −x1) ∨ … ∨ (xn ∧ −xn).
For any generator xi of An, let hi ∶ An → DM4 denote the unique homomorphism of
De Morgan lattices such that hi(i) = b and hi(xj) = n for all generators xj other than xi,
where b and n denote the two fixpoints of De Morgan negation on DM4.

Lemma 4.11. The algebra An is regular and non-idempotent.

Proof. The non-idempotence of An is witnessed by any hi, as hi(1) = ⊥ ≰ ⊤ = hi(0).
To prove thatAn is regular, suppose that a ≰ 0. Then there is a homomorphism h ∶ An →
DM4 such that h(a) ≰ h(0). We wish to show that h(1 ∧ a) ≰ h(0). Clearly h(0) < ⊤
and if h(0) = ⊥, then h(1 ∧ 0) = h(0) ≰ h(0), hence 1 ∧ a ≰ 0. Suppose therefore
without loss of generality that h(0) = b. Since h(0) = b, there is no xi such that h(xi) = n.
Therefore h(a) = ⊤ and there is some xj such that h(xj) ∈ {⊥, ⊤}, hence h(1) = ⊤ and
h(1 ∧ a) ≰ h(0). �

Lemma 4.12. The algebra An satisfies (αm) if and only ifm < n.

Proof. By Lemma 4.10, the inconsistency constant ofAn is a disjunction of n elements.
Vice versa, suppose that in An, the inconsistency constant is a disjunction of ai ∧ −ai for
1 ≤ i ≤ m. Then there is some generator xj such that none of the elements ai belong to the
subalgebra generated by x. We wish to show that xj ∧−xj ≰ (a1 ∧−a1)∨…∨(am ∧−am).

If the term t does not contain xj, then hj(t) = n, and if the term t does not contain any
variable other than xj, then hj(t) = b. It follows that if the term t does not belong to the
subalgebra generated by xj, then hj(t) ≠ b. Therefore, hj(xj ∧ −xj) ≰ hj(a1 ∧ −a1) ∨ … ∨
hj(am ∧ −am). �

Proposition 4.13. The class of all standard De Morgan ℐ-lattices (0-lattices) is not an
elementary class.

Proof. We show that these classes are not closed under ultraproducts. LetA be a non-
principal ultraproduct of the standard algebras Ai. Lemma 4.12 implies that A satisfies
(αn) for each n ≥ 1. In other words, A is a non-standard De Morgan 0-lattice. The
associated De Morgan ℐ-lattice, which is an ultraproduct of the standard De Morgan ℐ-
lattices associated to the De Morgan 0-lattices Ai, is therefore also non-standard. �



60

Theorem 4.14. There is an infinite decreasing chain of standard quasivarieties of (regu-
lar non-idempotent) De Morgan 0-lattices.

Proof. Take the quasivarieties generated by the sets of standard algebras {An | n ≥ i}
for i ≥ 1. These generate standard quasivarieties of regular non-idempotent De Morgan
0-lattices. Moreover, these quasivarieties are distinct, as witnessed by the quasiequations
(αn). �

We do not know know many standard quasivarieties of De Morgan 0-lattices there
are. Since totally inconsistent De Morgan 0-lattices are clearly termwise equivalent to De
Morgan algebras, we know that there is a continuum of quasivarieties of De Morgan 0-
lattices which satisfy the equation x∧ −x ≤ y∨ −y. However, no non-trivial standard De
Morgan 0-lattice which satisfies this equation can be totally inconsistent, therefore this
result tells us nothing about standard quasivarieties of De Morgan 0-lattices.

5. Conclusion

We have succeeded in the task of pinpointing just how much quasiequational expres-
sive power the standard inconsistency predicate adds to DeMorgan lattices: the only new
properties which were not expressible quasiequationally in the language of De Morgan
lattices are regularity, its conjunction and disjunction with non-idempotence, and total
inconsistency.

We have also seen that the only quasiequational expressive gain of adding a standard
inconsistency constant (as opposed to a standard inconsistency predicate) to Kleene lat-
tices consists in being able to define the class of idempotent Kleene lattices quasiequa-
tionally.

However, it remains an open question to determine howmany standard quasivarieties
of De Morgan lattices with an inconsistency constant there are. We have only managed
to show that there are infinitely many.

Another natural open question is the following: is the lattice of standard quasivarieties
a sublattice of the lattice of all quasivarieties of De Morgan lattice with an inconsistency
constant? Equivalently, is the intersection of two standard quasivarieties necessarily stan-
dard?
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